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ABSTRACT 

Exotic Electro-Optics recently conducted a basic evaluation of state-of-the-art spinel material from the standpoint of 

optical fabrication. The goal of this study was to characterize the behavior of several spinel samples as they passed 

through a complete optical fabrication sequence. Overall, the material was found to be compatible with conventional 

fabrication processes. Methodologies used in the manufacture of heritage optical components were employed 

successfully, without significant modification, in the fabrication of the spinel windows. A standard anti-reflective 

coating was used to coat polished spinel samples. Good coating-to-substrate adhesion was observed and the coated optic 

exhibited the expected spectral performance. In this paper, Exotic Electro-Optics reports on the results of this work.   
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1. INTRODUCTION 

Exotic Electro-Optics (EEO) recently completed a comprehensive material evaluation of state-of-the-art spinel obtained 

from three of the most prominent spinel material vendors. This study was done as part of an internal objective to 

determine the current state of the art in the marketplace for spinel optical material, especially pertaining to its 

applicability as a substrate for infrared windows and domes.  

 

Overall, the spinel samples were found to be compatible with conventional optical fabrication techniques. EEO’s 

experience with hard materials, such as sapphire and AlON, ensured that suitable tooling, machinery, abrasives, and 

experienced personnel were readily employed. A variety of methodologies used in the manufacture of heritage optical 

components were employed successfully, without significant modification, in the fabrication of the spinel optical 

samples.  

 

Polished spinel samples were successfully coated with an antireflective coating normally used for sapphire windows. 

Preliminary results show the coating exhibited the expected spectral performance in the desired wavebands, with 

excellent coating-to-substrate adhesion   

 

2. DESCRIPTION OF EVALUATION 

All of the spinel samples underwent analogous optical fabrication processes in order to examine spinel processing 

characteristics and capability. EEO performed a battery of tests designed to evaluate specific characteristics of interest 

chosen in order to thoroughly characterize the spinel pieces from the standpoints of optical fabrication and ultimate 

performance. These characteristics included a visual inspection by trained opticians, scratch/dig inspection and surface 

mapping, surface roughness by optical and contact profilometry, spectral performance by spectrophotometry, strength by 

equibiaxial flexural testing, and index of refraction testing by ellipsometry. 
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2.1 Preliminary Inspection 

The spinel samples were received in states varying from unprocessed raw blanks to material pre-polished for inspection. 

Generally, spinel is received in a raw, unprocessed state characterized by a rough, rippling surface which makes it 

impossible to inspect for inclusions or test its transmittance. 

 

All incoming samples were measured for surface roughness. Photographs of each sample were taken in order to record 

the samples’ general visual appearance. The samples were also measured for size. The size of the samples was chosen to 

be near 4” x 4” wide plates as this is an economical size for studying fabrication properties. 
 

2.2 Fabrication 

The spinel samples were blocked using a technique which minimized deformation of the samples and ensured a flat first 

side grind and polish. The samples were then ground using conventional grinding techniques, equipment, and abrasives. 

A succession of smaller grit sizes was used in order to minimize sub-surface damage from grinding. Numerous in-

process inspections of surface quality and figure were made in order to confirm that the samples were proceeding 

acceptably throughout the process of optical fabrication. 

 

Once the samples had been ground on the first side, the surface characteristics of the ground samples were evaluated. A 

TalySurf contact profilometer was used to measure the surface roughness and a differential interference contrast 

microscope was used to record the appearance of the surface microstructure. Visual inspections were performed by 

trained optical inspectors in order to find any material or process induced anomalies.  

 

The samples were then polished using relatively conventional techniques. As this work proceeded, we refined our optical 

fabrication process. As with any material, spinel exhibits idiosyncrasies unique to the material which require specialized 

optical fabrication processes suiting that material. 

 

The surface characteristics were examined once again after first-side polishing. Visual inspections, surface 

photomicrographs, and surface roughness by MicroXAM optical profilometry were all employed to create a detailed 

picture of the spinel samples.  

 

Second side fabrication was initiated by optically contacting each of the parts to a glass contact block. The parts were 

then ground in a fabrication process similar to the first side process described above. Finally, the samples were polished 

in accordance with EEO standard practices and methods, and released for evaluation. 

 

2.3 Post-fabrication Evaluation 

After polishing, the samples’ characteristics of interest were again examined. Visual inspections, photomicrography, 

optical profilometry, and spectrophotometry were all employed. This assisted us in the development of an understanding 

of the ultimate performance of these materials, as well as the establishment of a baseline from which to compare post-

coating performance. 

 

Each of the test specimens was then sliced into an equibiaxial strength sample. These samples were prepared and tested 

in accordance with ASTM C1149. Testing was performed by an outside test laboratory, University of Dayton Research 

Institute. 

 

After slicing the strength samples, the remaining spinel pieces were sent to J.A. Woollam Co., Inc. for index of 

refraction testing. There we obtained a broad range of index of refraction data which, when combined with transmittance 

data and reflectance data, gives us a detailed picture of spinel optical properties from each vendor. 
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3. DATA AND ANALYSIS 

Data are presented chronologically in groups, retaining the organization of the preceding description of the overall 

evaluation effort. 

 

3.1 Preliminary Inspection 

As explained in the section Description of Evaluation, investigations began with visual inspections of the samples. 

Figure 1 and Figure 2 are representative photomicrographs depicting the difference in the visual appearance and surface 

characteristics of incoming materials.  

 

The raw material in Figure 1 was of a very coarse texture and a high degree of irregularity. The inspection polished 

material, shown in Figure 2, allows incoming inspection of material inclusions and haze. In the photograph, multiple 

inclusions are evident throughout the bulk of the material. A light hazy appearance characterizes the material. This hazy 

appearance is quite common in spinel material. 

 

 

 

 
Figure 1. Representative photograph of raw, 

unprocessed spinel material. 

 
Figure 2. Representative photograph of inspection 

polished spinel material. 

 

 

 

In Figure 3 below, a photomicrograph of the surface of the unprocessed material is given. This magnified view confirms 

the disorder and irregularity of the surface visible to the unaided eye. Surface photomicrographs of the inspection 

polished spinel material are shown in Figure 4. This photomicrograph shows a surface that is generally polished, though 

it still exhibits significant pitting. 
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Figure 3. Representative photomicrograph of raw, unprocessed 

spinel material. 50X. 

 
Figure 4. Representative photomicrograph of inspection 

polished spinel material. 50X. 

 

 

Two of the inclusions seen in Figure 2 above are examined more closely in Figure 5 and Figure 6. In these figures, two 

separate examples of inclusions near the surface of the inspection polished spinel material are shown. These inclusions 

are quite large, the left measuring 0.02” in diameter and the right measuring over 0.06” when the outer halo is included. 

The chemical make-up of these inclusions is not known, but they are thought to be artifacts of the material consolidation 

process. 

 

 

 
Figure 5. 0.02" diameter inclusion on the surface of inspection 

polished spinel sample. 50X. 

 
Figure 6. 0.06” inclusion on the surface of inspection polished 

sample. 50X. 

 

 

Before processing, the mechanical dimensions of the samples were measured. The five samples ranged in size from 4.0” 

x 4.0” x 0.25” thick to 5.0” x 5.0” x 0.42” thick when received. The mechanical wedge across the raw samples was 

found to be anywhere from 0.013” to 0.078”, while the inspection polished sample only had 0.001” of wedge. Once 

preliminary evaluations were complete, optical fabrication of the samples began. 

 

3.2 Fabrication 

During fabrication we took these materials of varying initial quality and condition and subjected them to proprietary 

optical fabrication processes in order to examine their performance as deterministic, reliable optical substrates.  
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Photomicrographs of the samples were taken after grinding in order to determine surface microstructure of the samples’ 

starting point for polishing. Representative photomicrographs of the large-grained spinel surface are presented in Figure 

7 and Figure 8. One can easily see grains in the material in Figure 7, and grains were also observed in Figure 8. In these 

large-grained samples, cracking at some of the grain boundaries was observed. These inter-granular crevices are 

removed by polishing though they can leave inter-granular pitting behind, as will be seen in Figure 25. 

 

 

 
Figure 7. Spinel, ground. 50X. 

 
Figure 8. Spinel, ground, 200X. 

 

 

Figure 9 is a representative photomicrograph demonstrating the appearance of a ground, small-grained spinel surface. 

This small-grained surface closely resembles the intra-granular spinel surfaces seen previously, or a single-crystalline 

ground surface such as sapphire. 

 

 

 
Figure 9. Spinel, ground, 200X. This shows surface 

morphology of a ground, small-grained spinel surface. 

 
Figure 10. Spinel, ground. 500X. This representative 

photomicrograph shows the intra-granular surface morphology. 

 

 

In Figure 10, a representative photomicrograph is given showing the appearance of a single grain. This grain is raised 

plateau seen at the center of Figure 7.  It is apparent that the raised grain has been planarized more than the surrounding 

material. This shows that the granularity of spinel material affects its removal rate in grinding. Since the grain seen in 

Figure 10 was higher relative to the rest of the spinel surface, it follows that it has a lower removal rate that the 

400 µm 100 µm 

100 µm 40µm 
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surrounding material. It is thought that the difference in removal rate from grain to grain depends upon the grain 

orientation. Certain facets of spinel granules yield more easily to grinding and, as we will see, polishing processes.  

 

Visual inspections yielded no abnormal observations during the processing of the material. The spinel material was 

observed to grind and polish more quickly than sapphire material, in general. This accelerated the process of figure 

correction in comparison to sapphire. 

 

3.3 Post-fabrication Evaluation 

After polishing, the samples were visually inspected in order to determine the level of inclusions and haze in the bulk 

material. Surface photomicrographs were taken, and surface roughness and grain size were measured as well. The 

ultimate optical performance of the samples was measured by determining transmittance and index of refraction. Finally, 

the samples’ strengths were evaluated by equibiaxial flexure testing.  

 

 

 
Figure 11. Photograph of polished spinel. 

 
Figure 12. Photograph of polished spinel. 

 
Figure 13. Photograph of polished spinel. 

 
Figure 14. Polished spinel sample. This picture demonstrates 

that most haze is not visible unless inspecting closely under high 

intensity light. 

 

 

Figure 11 through Figure 14 are representative photographs showing the visual appearance of the samples from all three 

vendors after polishing. In Figure 11 and Figure 13, the material is observed to be generally clear but has a speckled 

appearance attributable to both inclusions and granularity in the material. In Figure 12, the sample exhibits a less 



 

 
 

 

Joseph R. Bashe, EEO; Douglas L. Hibbard, EEO, “Observations during the fabrication of spinel optics,” Window and Dome Technologies and 
Materials XI, Randal W. Tustison, Volume 7302, Page 7302OC, 2009 

 

Copyright 2009  Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only.  Systematic 
reproduction and distribution, duplication of any material in this paper for a fee or commercial purposes, or modification of the content of the paper are 

prohibited. 

 
http://dx.doi.org/10.1117/12.818205 

 

speckled, but hazy appearance. For reference, Figure 14 is given to show that only under intense lighting do all of the 

defects in the material become obvious, whereas under normal lighting some of the larger inclusions are visible but the 

material is quite transparent to the naked eye. The transmittance of these materials will be quantified in the Optical 

Performance results later in the section. 

 

In Figure 15 and Figure 16, the representative photomicrographs of polished, larger-grained spinel show that the grain 

structure is readily discernable using a differential interference contrast microscope at 50X and 100X. Because spinel is 

polycrystalline, differently oriented grains in the material polish at different rates, causing the landscape of plateaus and 

ridges shown. This makes it easy to characterize the grain size. We will examine grain size more closely in the 

MicroXAM optical profilometer measurements. 

 

 

 
Figure 15. Larger-grained spinel, polished. 50X. Grain structure 

is plainly visible on the polished surface. 

 
Figure 16. Larger-grained spinel, polished. 100X. Grain 

structure is slightly visible on the polished surface. 

 
Figure 17. Smaller-grained spinel, polished. 100X. In this 

image, the grains are too small to resolve. 

 
Figure 18.  Photomicrograph of polished, smaller-grained spinel 

material. 1000X. 

 

 

Conversely in Figure 17, it is not possible to see the individual grains in the spinel surface. This is due to the fact that the 

grains in this image are much smaller than those of Figure 15 and Figure 16. In the optical profilometer measurements of 

small-grained spinel surface roughness in Figure 23 and Figure 24, it is not possible to discern the grains in the smaller 

grained spinel sample. However, upon close inspection of Figure 18, grains on the order of 2 µm – 5 µm in diameter are 

visible (albeit with much difficulty). 
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Figure 19. Representative image of larger-grained spinel 

sample, polished. 100X. 2D view. 

 
Figure 20. Spinel sample, polished. 100X. 3D view 

corresponds to Figure 19. 

 
Figure 21. Spinel sample, polished. 100X. 2D view.  

All but a single grain has been masked. The 

dimensions of this grain are 416 µm X 436 µm. 

 
Figure 22. Spinel sample, polished. 100X. 3D view 

corresponds to Figure 21.  All but a single grain has been 

masked. 

 

 

 

From Figure 19 and Figure 20 above, it is evident that the larger-grained spinel material compromised final surface 

roughness. In these images produced by the MicroXAM optical profilometer, we can see that the steps from one grain to 

another are typically from 50 Å to 100 Å in height. These steps affect measurements of surface roughness in the polished 

state when the grain sizes are on the order of the area under measurement. Because of this, intra-granular surface 

roughness was also examined by masking all but one large grain. These data are given in Figure 21 and Figure 22. 

Within these intra-granular areas, we observed that the surface roughness is typical of polished glasses and crystals, as 

well as smaller-grained spinel. Quantitative data is provided in Table 1 at the end of the section. Further modification of 

the surface finishing process is expected to alleviate differential material removal rates and yield improvement in the 

overall surface roughness. 

 

It may seem that in Figure 23 and Figure 24 that the samples do not contain grains. However, this is an illusion as Figure 

18 shows. These grains were measured to be at approximately 2 µm – 5 µm in size, and thus are not readily discernable 

in the optical profilometer measurements shown in Figure 23 and Figure 24. 
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Figure 23. Spinel sample. 100X. Side 1, polished. 2D view. 

 
Figure 24. Spinel sample. 100X. Side 1, polished. 3D view. 

 

 

Figure 25 shows another example of large-grained spinel material. In this example, pitting can be seen at the grain 

boundaries, apparent as dark spots along the boundary. This pitting is the remnant of the crevices observed after 

grinding. Figure 26, we see an inter-granular step height of approximately 110 Å.  

 

 

 

 
Figure 25. Spinel sample. 100X. 2D view. 

 
Figure 26. Spinel sample. 100X. 3D view. 

 

 

 

Table 1 shows that spinel in the ground state exhibits high RMS and PV surface roughness, while the standard deviation 

of the measurements is approximately 10% from one spinel sample to the next. In polishing, the surface roughness has 

been reduced substantially, but at the expense of a high standard deviation from sample to sample. This is solely due to 

the fact that large-grained and small-grained materials were considered together. When we look only at the intra-granular 

surface roughness of the large-grained samples, we see that it is significantly lower in both magnitude and variance. 

These values are equivalent to the surface roughness found in small-grained and crystalline polished optical materials. 

 

With these observations we have inspected the surface characteristics of polished spinel material. These results show that 

using relatively conventional processes, spinel can be polished to typical optical specifications.  
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Measurements 
in 

Angstroms 

Inter-granular 
Intra-granular 
(masked data) 

Ground Spinel Polished Spinel Polished Spinel 

RMS PV RMS PV RMS 

AVERAGE 6524 34507 28.61 138.76 11.05 

STDEV 750 4283 13.73 112.88 2.74 

STDEV % 11.5% 12.4% 48.0% 81.4% 24.8% 

MIN 5626 29359 9.42 9.58 7.55 

MAX 7352 39985 45.58 415.50 15.72 
Table 1. Overall and intra-granular surface roughness of ground and polished spinel. 

 

 

3.4 Strength Evaluation 

Strength evaluations were carried out using equibiaxial flexure samples. These samples were used because they offer the 

clearest indication of bulk material strength. However due to the size of the sample required, we were only able to obtain 

one strength sample per sample of spinel. Thus we were unable to obtain a data set large enough to be statistically 

precise while remaining economical. However, the values obtained are in line with expectations as to the strength of 

spinel material, and are tabulated in Table 2. 
 

 

 

Equibiaxial 

Flexure Strength 

(ksi) (MPa) 

MEAN 19.97 137.7 

MIN 12.01 82.8 

MAX 29.92 206.3 

STDEV 7.60 52.4 

STDEV % 38% 
Table 2.  Spinel equibiaxial flexure strength data. 

 

 

3.5 Optical Performance 

The optical performance of polished spinel was of particular interest. Spinel is widely known to have excellent 

transmission in the 3 – 5 µm wavelength band. After polishing, each spinel sample was examined for transmittance from 

400 nm to 7000 nm. Although the spinel samples were finished to different thicknesses, transmittance values were 

normalized to theoretical transmittance at 0.25” thickness before averaging the values from each sample together to get 

the curve of average spinel transmittance. The average transmittance of the spinel samples is given in Figure 27. 
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Figure 27. Average transmittance of spinel samples. Error bars represent maximum and minimum values measured. 

These values have been normalized to represent transmittance at 0.25” thickness. 

 

 

 
Figure 28. Average index of refraction of spinel samples. Error bars represent maximum and minimum values 

measured. 
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Spinel sample pieces from each vendor were sent to J.A. Woollam Co., Inc. for index testing. Refractive index was 

determined using spectroscopic ellipsometery over the wavelength range from 0.3 µm to 8.0 µm. An M-2000DI was 

used to collect data from 0.3 µm to 1.7 µm and an IR-VASE was used to collect data from 1.7 µm to 8.0 µm. These data 

are shown in Figure 28. 

 

3.6 Coating 

Spinel samples were coated using a standard AR coating developed by EEO for sapphire. This coating is optimized for 

sapphire windows over a particular set of wavebands. The coating was chosen for this demonstration due to spinel’s 

similarity in refractive index and coefficient of thermal expansion when compared with sapphire. With further 

development, a coating can be created to compliment spinel material more fully. The main purpose of this trial was to 

allay concern that coating-to-substrate adhesion could be a problem. Several photomicrographs are presented in order to 

show the superior adhesion achieved with this un-optimized coating. Visual inspections yielded no differences in surface 

appearance after coating. No severe environmental testing was performed. 

 

 

 
Figure 29. AR coated spinel, 500x. 

 
Figure 30. AR coated spinel, 1000x 

 

4. CONCLUSION 

EEO has determined that spinel is a viable substrate material for optical components including domes and window 

panels. Its strength makes it competitive with materials such as AlON, while the fact that it is softer and more compliant 

than sapphire makes it easier to machine, grind, and polish. Furthermore, it is evident that spinel material’s transmittance 

is of higher performance than that of AlON or sapphire at the far end of the 3 µm – 5 µm band. An additional advantage 

of spinel is that it can be made near-net shape, making spinel an attractive material for domes and other non-planar 

optical components. Finally, spinel is a polycrystalline material meaning that it is optically isotropic. All of these 

characteristics make spinel an attractive, viable optical substrate for both windows and domes. The goal of this study 

was to characterize the behavior of spinel through typical optical fabrication processes. We were successful in 

employing conventional optical manufacturing techniques in order to fabricate spinel optics, and were able to obtain a 

large set of data including visual inspections, surface roughness, grain size, transmittance, strength, index of refraction, 

and coating characteristics. 
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