Q-Type Forbes Aspheres for Diamond-Turning

EEO is now accepting drawings for diamond-turning using the Q-type Forbes bases

- EEO has developed capabilities to create diamond-turning sag tables directly from Forbes coefficients
- Profilometer scans can be analyzed directly using Forbes coefficients
- Surfaces can contain QCON and QBFS forms with any number of coefficients
- Forbes Aspheres provide optical designers with control that is difficult and time-consuming to replicate using standard even aspheres
 - More easily screen undesired design forms¹
 - Reduce final system sensitivity²
 - Forbes bases are orthogonal, so the designer can change the number of terms without affecting the surface sag³
 - Drawings require 1/3 the number of significant digits⁴
 - Coefficients can be meaningfully toleranced⁵

Bases now accepted by EEO

Q^{BFS} (mild):

$$sag(\rho) = \frac{\rho^2 Curv}{1 + \sqrt{(1 - \rho^2 Curv^2)}} + \frac{\left(\frac{\rho}{\rho_{max}}\right)^2 \left(1 - \left(\frac{\rho}{\rho_{max}}\right)^2\right)}{\sqrt{(1 - \rho^2 Curv^2)}} \sum_{m=1}^{M} a_j Q_m^{bfs} \left(\frac{\rho}{\rho_{max}}\right)^2$$

Q^{CON} (strong):

$$sag(\rho) = \frac{\rho^{2} Curv}{1 + \sqrt{(1 - (1 + K)\rho^{2} Curv^{2})}} + \left(\frac{\rho}{\rho_{max}}\right)^{4} \sum_{m=1}^{M} a_{j} Q_{m}^{con} \left(\frac{\rho}{\rho_{max}}\right)^{2}$$

Traditional polynomial (e.g. even asphere):

$$sag(\rho) = \frac{\rho^2 Curv}{1 + \sqrt{(1 - (1 + K)\rho^2 Curv^2)}} + \sum_{j=1}^{Amax} A_j \rho^j$$

Diffractive (can be added to any aspheric form):

$$sag(\rho) = \frac{\rho^2 Curv}{1 + \sqrt{(1 - (1 + K)\rho^2 Curv^2)}} + \frac{DiffrOrder}{n_1 - n_2} \left\{ \left(\sum_{j=1}^{Cmax} C_j \rho^{(2*j)} \right) + \lambda * floor\left(\frac{1}{\lambda} \left| \sum_{j=1}^{Cmax} C_j \rho^{(2*j)} \right| \right) \right\}$$

References:

- 1. Youngworth, R. N. and Betensky, E. I., "Lens design with Forbes aspheres", Proc. SPIE 7100, 71000W (2008)
- 2. Ma, B., Li, L., Thompson, K.P., and Rolland, J.P., "Applying slope constrained Q-type aspheres to develop higher performance lenses," Opt. Express 19, 21174-21179 (2011)
- 3. Forbes, G. W., "Shape specification for axially symmetric optical surfaces," Opt. Express 15(8), 5218–5226 (2007).
- 4. Forbes, G. W., "Better Ways to Specify Aspheric Shapes Can Facilitate Design, Fabrication, and Testing Alike", International Optical Design Conference, Optical Society of America, JMA1 (2010).
- 5. Youngworth, R. N., "Tolerancing Forbes aspheres: advantages of an orthogonal basis", Proc. SPIE 7433,

	Advantages
Optical Design	Eliminates Forbes conversion
	Fewer equations
	 Increased design efficiency
Diamond Turning	 Eliminates Forbes conversion
	 Maintains geometric tolerance
	integrity
	 Direct DT programming
	 Increased production efficiency
Test and Measurement	 Eliminates Forbes conversion
	 Direct fabrication to test
	 Maintains design integrity